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Evidence for allocentric boundary and goal
direction information in the human entorhinal
cortex and subiculum
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In rodents, cells in the medial entorhinal cortex (EC) and subiculum code for the allocentric
direction to environment boundaries, which is an important prerequisite for accurate posi-
tional coding. Although in humans boundary-related signals have been reported, there is no
evidence that they contain allocentric direction information. Furthermore, it has not been
possible to separate boundary versus goal direction signals in the EC/subiculum. Here, to
address these questions, we had participants learn a virtual environment containing four
unique boundaries. Participants then underwent fMRI scanning where they made judgements
about the allocentric direction of a cue object. Using multivariate decoding, we found
information regarding allocentric boundary direction in posterior EC and subiculum, whereas
allocentric goal direction was decodable from anterior EC and subiculum. These data provide
the first evidence of allocentric boundary coding in humans, and are consistent with recent
conceptualisations of a division of labour within the EC.
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he entorhinal cortex (EC) provides the primary cortical

input to the hippocampus!. Given its distinct profile of

anatomical connectivity, different subregions of the EC are
hypothesised to convey different types of information that is
combined in service of episodic memory and spatial navigation®3,
In rodents, the medial EC (MEC) receives projections from
regions processing spatial information, including the postrhinal
cortex (primate parahippocampal cortex; PHC) and subiculum,
whereas the rodent lateral EC (LEC) receives information from
the object-sensitive perirhinal cortex. This anatomical con-
nectivity is preserved in humans, with posterior EC (homologous
with rodent MEC) showing preferential connectivity with PHC?
and posterior subiculum?, whereas anterior EC (homologous with
rodent LEC) shares preferential connectivity with the perirhinal
cortex* and anterior subiculum®. These posterior and anterior
divisions of EC and subiculum, therefore, were hypothesised to
code for “where” and “what” information, respectively®’. Con-
sistent with a division of labour in the EC, recent evidence of
spatial coding in the rodent LEC led to the proposal that MEC
supports neural populations involved in spatial navigation (e.g.,
grid cells), whereas the LEC codes for external sensory inputs
(e.g., landmarks or prominent objects in the environment)s.
Alternatively, the MEC and LEC may support allocentric and
egocentric reference frames, respectively®.

The rodent MEC contains spatially tuned neural populations,
including border cells!? that fire near environment boundaries, a
subset of which indicate the boundary’s allocentric direction. The
coding of environment boundaries is essential for neural com-
putations determining one’s spatial location. For example, path
integration (i.e., the ability to update one’s spatial position using
self-motion cues) invariably accumulates error!!, and boundaries
help correct these noisy positional estimates!? as well as providing
strong cues for reorientation!3. Environment boundaries are vital
for other spatially tuned neurons in the MEC. Specifically, grid-
cell firing fields anchor to an enclosure’s walls'4, with irregular-
shaped enclosures deforming the grid cell’s characteristic hex-
agonal symmetry!”. In the rodent hippocampus, the removal of
environment boundaries leads to the degradation of place cells!®,
while expanding the size of an environment by moving its
boundaries results in commensurate expansion of place cell firing
fields!”. Cells coding for environment boundaries were identified
also in the rodent dorsal subiculum (homologous with human
posterior subiculum), with these so-called boundary vector cells
containing information about both the allocentric direction and
distance!® to walls. Accordingly, place cell activity has been
modelled as the summed and thresholded input of these spatial
properties describing the boundary position!®. In sum, boundary
coding is a fundamental component of spatial navigation.

In humans, boundaries are behaviourally salient, aiding reor-
ientation!? and used to define object locations??21. Recordings
from the EC in intracranial patients revealed stronger grid-cell-
like representations?> when participants navigated near to walls
in a virtual environment (VE). Similarly, boundaries engage the
hippocampus?3, with univariate activity increasing with the
number of boundary elements to-be-imagined??. Intracranial
recordings implicate the subiculum as the locus of this boundary
coding?®, with increased theta frequency activity associated with
object locations proximal to the VE’s walls. Despite evidence of
boundary-related signals in the EC/hippocampus, these studies
do not demonstrate the allocentric directional information
necessary to support accurate positional coding!®. Specifically, it
is unclear whether the signal discriminates if the boundary is
located to the North, South, East or West, regardless of the
participant’s position and orientation in the environment.
Indirect evidence of allocentric boundary coding in the EC/sub-
iculum was shown in a recent functional magnetic resonance

imaging (fMRI) study using multivariate analysis methods, in
which an allocentric goal direction signal, thought to reflect the
simulated representation of head direction, was identified?®. The
heading direction to-be-imagined, however, was determined by
goal objects arranged in front of boundaries in the enclosed VE.
Consequently, it was not possible to disentangle whether this
signal reflected allocentric goal or allocentric boundary direction.
Moreover, this study lacked the anatomical resolution to differ-
entiate subregions of the EC and subiculum. An outstanding
question, therefore, is whether there is an allocentric boundary
direction signal in the human EC and subiculum, and if this is
distinct from allocentric goal direction coding.

In contrast to the MEC, cells in rodent LEC show far less
spatial tuning. LEC neurons code space in the presence of objects,
for example, showing trace memory for object locations?”. The
function of the LEC, therefore, may be to code for local envir-
onmental information, such as the positions of objects, con-
stituting a landmark, or goal location®. Moreover, in contrast to
MEC, spatially tuned neurons in the LEC seem to respond in an
egocentric reference frame®. In humans, a preference for object
versus scene/spatial manipulations has been demonstrated in
anterior EC®7, reflecting its strong connections with object-
specific perirhinal cortex. As noted above, previous studies have
lacked the anatomical resolution to determine where in the EC/
subiculum allocentric goal direction representations are located?°.
One possibility is that the human anterior EC supports spatial
judgements regarding the allocentric direction of landmarks in
the environment (i.e., object-in-place coding).

In the current study, we investigated the neural correlates of
allocentric boundary and goal direction coding in the human
medial temporal lobe, using immersive virtual reality and high-
resolution fMRI. Importantly, we used anatomically informed
masks of the EC and subiculum, and orthogonalised allocentric
boundary and goal processing. Unlike previous studies demon-
strating increased neural activity associated with boundaries, we
used multivariate analyses to determine whether different allo-
centric boundary directions (i.e., North, South, East and West)
are associated with different evoked responses, facilitating clas-
sification of these directions. Given the proposed division of
labour within the EC and subiculum, we separated our ROIs into
anterior and posterior portions to examine longitudinal differ-
ences in decoding accuracy according to task. Specifically, we
tested whether posterior EC and subiculum contributed to allo-
centric boundary coding. Furthermore, we investigated whether
anterior EC supports representations of allocentric goal direction
given its potential involvement in the coding of landmark objects.

In line with the proposed division of labour in EC/subiculum,
we show that the posterior EC and subiculum code for allocentric
boundary direction whereas anterior regions code for the allo-
centric direction towards a goal. These data provide evidence for
a fundamental component of place coding.

Results

Behavioural. Before proceeding to the scanned fMRI task, parti-
cipants were required to learn the layout of the VE as assessed by a
judgement of relative direction (JRD) task. Participants needed on
average 3.39 (standard deviation = 1.01) rounds of exploration to
learn the relative directions of the global landmarks. To test whether
performance on the JRD changed as a function of the initial
landmark facing direction, or the angular disparity of the second
landmark relative to the first, accuracy and RT data were submitted
to separate repeated-measures ANOVAs comprising the factors
Landmark (Mountain, Cathedral, Clock tower and City) and
Angular Disparity (90° 180° and 270°). Accuracy was modulated by
the angular disparity of the second landmark [repeated-measures
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ANOVA: F (2, 54) =949, p=0.0003, 1,2=026], but not the
initial landmark facing direction [repeated-measures ANOVA: F (3,
81) =041, p=10.74, 1,2 =0.015] and these two factors did not
interact [repeated-measures ANOVA: F (6, 162) =0.34, p=0.92,
’7p2:0~012] (Fig. la). Performance was significantly better for
landmarks located at 180° or 90° disparity versus those located at
270° disparity ([paired-sample ¢ test: ¢ (27) = 3.45, p =0.001, 95%
CI: [0.05-0.18], Hedges’s g,, = 0.84; adjusted alpha = 0.05/3 com-
parisons = 0.017] and [paired-sample ¢ test: t (27) = 3.66, p = 0.001,
95% CI: [0.04-0.14], Hedges’s g,, =0.73], respectively); perfor-
mance did not differ between 180° and 90° disparities [paired-
sample ¢ test: t (27)=0.93, p=0.36 95% CI: [-0.07 to 0.03],
Hedges’s g,, =0.18]. The same analysis for RT data revealed a
similar pattern of results, with a main effect of angular disparity
[repeated-measures ANOVA: F (1.16-31.36) =9.37, p=0.003,
1> =0.257], but no effect of initial landmark facing direction
[repeated-measures ANOVA: F (1.44, 38.98)=0.73, p=045,
1> =0.026] and no interaction between these factors [repeated-
measures ANOVA: F (2.3, 62.21) =061, p=0.57, 1,2 =0.022].
Responses were fastest for landmarks located at 180° disparity
versus those located at 270 [paired-sample ¢ test: t (27) =3.27, p =
0.003, 95% CI: [—4.29 to —0.98], Hedges’s g,, = 0.70; adjusted
alpha = 0.05/3 comparisons = 0.017] with a trend towards being
faster than those located at 90° [paired-sample f test: t (27) =24,
p=0.02, 95% CI: [-2.7 to —0.21], Hedges’s g,, = 0.48]; responses
for landmarks located at 90° disparity were faster than those located
at 270° [paired-sample ¢ test: t (27) =3.71, p =0.0009, 95% CI:
[—1.83 to —0.53], Hedges’s g,, = 0.26].

Participants were required to understand that the VE
boundaries were impassable. It was crucial, therefore, that they
spent a large proportion of their exploration time in close
proximity to the boundaries. To assess time spent near to the
boundaries, for each participant we divided the total explorable
space of the VE into 10,000 bins (each bin = 5 x 5 virtual metres?
of the VE), and normalised the total time across all rounds of
exploration so that it summed to 1. We then created masks of the
areas next to the boundaries in the VE, comprising the four
different allocentric boundary directions (each mask per
boundary side was 40 x 5 virtual metres). On average, participants
spent 76.16% (SD =10.45%) near the environment boundaries
(Fig. 1b). A one-way repeated-measures ANOVA revealed that
exploration time did not differ as a function of allocentric
boundary direction [repeated-measures ANOVA: F (2.27,
61.24) = 1.16, p = 0.33, 7,2 = 0.041].

Given the extensive training required prior to fMRI scanning,
performance on the scanner task was very high (Fig. 1c).
Accuracy and RT data were submitted to separate one-way
repeated-measures ANOVAs comprising allocentric goal direc-
tion (North, South, East and West). Accuracy was matched across
all four allocentric goal directions [repeated-measures ANOVA: F
(2.18, 58.89) =0.35, p=10.73, 11p2 =0.013], whereas RT differed
[repeated-measures ANOVA: F (3, 81)=29.18, p=0.00001,
1> = 0.52]. Follow-up comparisons revealed that responses to
allocentric goals located to the North were significantly quicker
than those goals located to the South [paired-sample ¢ test: ¢
(27) =3.15, p =0.004, 95% CI: [—0.06 to —0.01], Hedges’s g,, =
0.36; adjusted alpha = 0.05/6 comparisons = 0.008], East [paired-
sample ¢ test: t (27) = 6.72, p < 0.001, 95% CI: [—0.09 to —0.05],
Hedges’s g,,=0.65] and West [paired-sample t test: t (27) =
10.20, p <0.001, 95% CI: [—0.12 to —0.08], Hedges’s g,, = 0.85].
Similarly, responses to goals located to the South were faster than
those located to the East [paired-sample f test: t (27) =3.12, p =
0.004, 95% CI: [—0.05 to —0.01], Hedges’s g,, = 0.3] and West
[paired-sample ¢ test: ¢ (27) = 5.06, p = 0.00003, 95% CI: [—0.09
to —0.04], Hedges’s g,, = 0.54]; differences in RTs for responses
to goals located to the East and West did not survive Bonferroni-

correction [paired-sample ¢ test: t (27) = 2.45, p = 0.021, 95% CI:
[—0.06 to —0.01], Hedges’s g,, = 0.26]. These differences in RT
may reflect participants forming a reference frame in the
environment, with the Mountain and Cathedral providing a
conceptual North-South axis. Consequently, responses to allo-
centric goal judgements in these directions may be facilitated?8-2°.
Importantly, however, these differences in RT did not influence
subsequent decoding performance (see Supplementary Note 1).
Although the participants performed a task regarding the
allocentric goal direction, trials could be coded also according
to the allocentric boundary direction. The same repeated-
measures ANOVAs were conducted with this coding, and again
revealed that accuracy was matched across allocentric boundary
direction [repeated-measures ANOVA: F (3, 81) = 1.87, p=0.14,
1,> = 0.065], but that RT differed [repeated-measures ANOVA: F
(3, 81) = 8.24, p=10.00007, ’7172 =0.234]. The differences in RT
stemmed from faster responses to trials in which the allocentric
boundary was located to the North relative to East [paired-sample
t test: t (27)=3.34, p=0.002, 95% CI. [-0.04 to —0.01],
Hedges’s g,, =0.23; adjusted alpha=0.05/6 comparisons=
0.008] and West [paired-sample ¢ test: ¢ (27) =2.91, p =0.007,
95% CI: [—0.04 to —0.01], Hedges’s g,, = 0.19]. The same pattern
of data were evident for allocentric boundaries located to the
South, with faster responses relative to East [paired-sample ¢ test:
t (27) =4.08, p=0.0003, 95% CI: [—0.05 to —0.02], Hedges’s
g4y =0.28] and West [paired-sample ¢ test: t (27) =3.45, p=
0.002, 95% CI: [—0.04 to —0.01], Hedges’s g,, = 0.24]; RTs did
not differ for allocentric boundaries located to the North and
South [paired-sample t test: t (27) =0.75, p=0.46, 95% CL
[—0.01 to 0.02], Hedges’s g,, = 0.06], nor East and West [Paired-
sample ¢ test: ¢t (27) =0.69, p=0.49, 95% CI: [—0.01 to 0.01],
Hedges’s g,, = 0.04] (Supplementary Fig. 1).

Multivariate decoding. Mean group-level decoding accuracy of
allocentric boundary direction in the posterior EC was sig-
nificantly above chance (Fig. 2a), as determined by the bias-
corrected and accelerated boot-strap (BCa) null distribution [non-
parametric Monte Carlo significance test: p = 0.0005]. The same
analysis for allocentric goal direction, however, did not exceed
chance performance [non-parametric Monte Carlo significance
test: p=0.5153]. In the anterior EC (Fig. 2b), it was possible to
decode also allocentric boundary direction [non-parametric
Monte Carlo significance test: p = 0.0239], however, in contrast to
the posterior EC, the anterior EC contained information also
regarding the allocentric goal direction [non-parametric Monte
Carlo significance test: p = 0.0022].

The pattern of data in the posterior subiculum mirrored that of
the posterior EC, with significantly above chance decoding of
allocentric boundary direction [non-parametric Monte Carlo
significance test: p =0.0016], but not allocentric goal direction
[non-parametric Monte Carlo significance test: p=0.1825]
(Fig. 2¢). In line with anterior EC, the anterior subiculum
contained information regarding the allocentric goal direction
[non-parametric Monte Carlo significance test: p=0.0176]
(Fig. 2d). It was not possible in this region, however, to decode
allocentric boundary direction [non-parametric Monte Carlo
significance test: p=0.1197]. Given that the posterior and
anterior sections of both the EC and subiculum lie adjacent to
one another, it is possible that decoding scores in individual ROIs
reflect the leakage of information between neighbouring regions.
To test for this, we carried out additional control analyses in
which we eroded the masks to reduce the potential influence of
adjacent cortical regions (Supplementary Note 2). As can be seen
in Supplementary Fig. 2, the results remained relatively consistent
even when removing these additional neighbouring voxels.
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Fig. 1 Mean performance during the learning phase and fMRI scan task. a On the JRD task, participants made more accurate judgements regarding
landmarks located either at 180°, or 90° angular disparity, and made the fastest responses for landmarks located at 180° disparity. b Exploration time in the
environment was matched across the four different allocentric boundary directions. ¢ In the fMRI scan task, accuracy was matched for allocentric goal
direction, and the same was true when grouping the trials according to allocentric boundary direction. Individual subject’s data points are represented by
grey circles. Error bars represent the 95% Cl. Source data are provided as a Source Data file

Outside of our EC and subiculum ROIs, we were able to decode
allocentric goal direction in the PHC [non-parametric Monte Carlo
significance test: p = 0.0064]; decoding of allocentric boundary and
goal direction did not survive Bonferroni-correction in either the
CALl, or CA23/DG (Supplementary Fig. 3). Repeating the analysis
in which we eroded the ROIs, however, resulted in these PHC
effects no longer being significant (see Supplementary Note 2 and
Supplementary Fig. 4). Control analyses in which different portions
of the trial after movement onset were used for the decoding
analysis suggest that the effects observed in EC and subiculum were
not driven by visual information (Supplementary Note 3 and
Supplementary Fig. 5). Furthermore, testing for egocentric
boundary or goal direction coding revealed evidence only of an
egocentric goal direction response in the anterior subiculum of the
EC and subiculum ROIs (Supplementary Note 4 and Supplemen-
tary Figs. 6 and 7).

Discussion

In the current study, we provide the first evidence that brain
regions, analogous anatomically to those in the rodent brain, the
posterior EC and subiculum, code for the allocentric direction to
environment boundaries. Moreover, we found that anterior sec-
tions of these structures code for the allocentric goal direction.
These data support the notion of a division of labour in the EC, in
which different regions support processes involved in spatial
navigation, and the coding of external sensory information®. Our
findings are broadly consistent also with previous research in

humans that has shown functional differences in the EC
according to stimulus type (i.e., scenes versus objects)®”’.
Environment boundaries support successful navigation by
providing an error correction signal when navigation is based
upon path integration!?, static positional information during
landmark navigation??, and provide strong cues for reorienta-
tion!3. Consistent with the rodent literature, we were able to
decode allocentric boundary direction in posterior EC and sub-
iculum. Although previous studies have shown univariate
responses associated with boundaries?»2>, by using multivariate
analysis methods, we have provided the first evidence that this
medial temporal lobe boundary signal contains also the allo-
centric information crucial for both grid and place cell function.
Moreover, in contrast to previous research, we were able to
separate the contribution of allocentric boundary and allocentric
goal coding®®. We observed above chance decoding of allocentric
boundary direction also in anterior EC, albeit with lower accuracy
than that observed in posterior EC3%31. Although border cells are
more prominent in the rodent MEC versus LEC, our data is in
line with a weak boundary signal that has been reported in rodent
LEC3], and may be explained by the transmission of information
between the two regions, due to their high levels of connectivity.
Given that we see the same pattern of data in posterior EC and
subiculum, it might lead to questions as to whether this repre-
sents a redundancy of function, with the same information
represented in both regions. One possible difference between the
posterior EC and subiculum might be information regarding the
distance to the environment boundary. Although we manipulated
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Fig. 2 fMRI decoding results in bilateral EC and subiculum. a Using a linear
SVC with L2 regularisation, in bilateral posterior EC group decoding
accuracy for allocentric boundary direction was significantly above chance,
as determined by a boot-strap permutation test (10,000 samples). It was
not possible, however, to decode allocentric goal direction. b In anterior EC,
we were able to decode both allocentric boundary and goal direction. € The
posterior subiculum contained similar information to the posterior EC, in
that we could decode allocentric boundary, but not goal, direction. d Finally,
in anterior subiculum it was possible to decode allocentric goal, but not
boundary, direction. All p values were determined via non-parametric
Monte Carlo significance tests. Source data are provided as a Source
Data file

only allocentric boundary direction in the current study, a key
component for boundary vector cells is that they code also for
distance to a boundary!$, with evidence of this coding coming
from recordings from the subiculum of intracranial implant
patients?®. Examining the sensitivity of different brain regions to
boundary proximity remains an important future question for
boundary coding research, and the subiculum would be a likely
candidate to contain this information.

A recent study discovered object-vector cells in the rodent
MEC that show an allocentric directional response to objects
within the environment32. Given that both boundary and object-
related responses are evident in MEC, and that object-vector cells
respond also to boundary-like structures (i.e., elongated objects),
it is not possible to distinguish whether our effects are driven by
border and/or object-vector cells. Consistent with previous defi-
nitions of boundaries, in the current study participants had
experience that the walls impeded movement!%18:32, and they

comprised an extended 3D surface’3. Moreover, to our

knowledge, there are no reports of object-related firing in the
rodent dorsal subiculum. While it is possible that object-vector
cells contribute to the posterior EC effect observed in the current
study, a more parsimonious explanation is that the walls were
considered boundaries and that the decoding performance
reflects border and boundary vector cell responses in the EC and
subiculum, respectively. The distinction between object-vector
and boundary responses in the EC awaits further clarification in
humans.

In contrast to MEC, the rodent LEC receives direct projections
from the object-sensitive perirhinal cortex, and it has been
hypothesised that it codes for external sensory information, such
as prominent objects in specific locations that may constitute
landmarks8. Consistent with this interpretation, we observed
above chance decoding of allocentric goal direction in anterior EC
and subiculum. Our data support previous studies in which
increased activity in anterior hippocampus is associated with
successfully navigating to a goal location®*. It should be noted,
however, that our participants never actually visited the goal
location which could have prevented the formation of a stable
goal representation supported by, for example, hippocampal
CA1%. Evidence from rodent studies suggests that not only does
the rodent LEC code for objects in specific places, but that it is
more responsive to local cues rather than distal landmarks3°.
Specifically, when two sets of cues (local versus distal) were placed
in opposition, the population response of LEC neurons tracked
changes to the local cues. In the current study we did not
manipulate global versus local features, but it is conceivable that
the “global versus local” division of labour in EC emerges when
there are multiple reference frames that need to be coordinated.
Future studies in humans will be required to test whether the EC
differentially codes for these different spatial cues.

Previous studies of EC function in humans have supported a
division of labour according to object versus scene/spatial
stimuli®’. Why this distinction emerges according to stimulus
type, however, remains unclear. One possibility is that, due to
foveal vision, primates visually explore space, which in turn
engages neural populations that support spatial navigation. For
example, grid-cell activity has been demonstrated during the
passive viewing of scene stimuli®’, with evidence also of neurons
with a profile similar to that of border cells. Similar data have been
reported recently in human fMRI whilst participants visually
explored 2D scenes®3. The scene versus object distinction, there-
fore, may reflect the engagement of these spatially tuned neural
populations during the viewing of scene stimuli. The current study
helps elucidate further the exact mechanism underlying this
stimulus-specific effect in the EC, and suggests that, in part, the
processing of boundary information in scenes drives this scene-
sensitive effect in posterior EC. In contrast, recent human studies
demonstrate that objects are more likely to engage the anterior EC,
which is closely connected with perirhinal cortex. The current data
are not inconsistent with this notion, as the allocentric goal
direction signal could be interpreted as reflecting the participant
bringing to mind a specific landmark object. It was not possible to
disentangle the allocentric goal/landmark effect in the current
paradigm because we maintained the same configuration of
landmarks so that participants had a coherent understanding of
the layout of the environment. Given the sparsity of the VE,
changing the configuration of the landmarks during the experi-
ment would most likely have confused participants resulting in
incorrect responses and therefore lost trials. Understanding the
precise role of the anterior EC, and what manipulations govern its
involvement during spatial tasks, remains an important clinical
objective, given, for example, that proteins such as tau aggregate in
the transentorhinal area (comprising perirhinal cortex and ante-
rior EC) early in Alzheimer’s disease3”.
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Outside of our key ROI, we observed significant decoding of
allocentric goal direction in the PHC. These findings are in line
with other data that suggest the PHC contains information
regarding the direction to an imagined goal®’. Specifically, when
participants were required to recall the direction between two
well-learned goal locations only the PHC was sensitive to simi-
larities in imagined direction. These data are compatible with the
findings reported here for a task in which participants were
required to remember the allocentric direction to a goal landmark
given the current heading direction. Alternatively, this above
chance decoding could reflect the participants bringing to mind
the specific landmark, with landmarks also known to engage the
PHC?*!. Caution should be expressed when interpreting these
results, however, given that the effects were no longer significant
when using eroded masks.

Although we did not find evidence that the PHC is involved in
the processing of allocentric boundary direction, this region has
been shown to be exquisitely sensitive to scene stimuli, and in
particular the structure of a scene*!#2. Scene-selective portions of
the PHC discriminate scene stimuli depending upon whether they
contain highly visible boundaries regardless of scene content*3,
and add to a network of brain regions including V1 and the
lateral occipital cortex that are sensitive to boundary information
in scenes*. Furthermore, the occipital place area has been shown
to be causally involved in memory for object locations relative to
boundaries but not landmarks?!. It remains to be explored in
humans how this lower-level visual information regarding scene
structure is combined with the allocentric representations
necessary to support allocentric boundary direction coding
observed here in the EC and subiculum. One possibility is that
representations of these boundary features in the environment are
combined, via conjunctive neurons, with both head direction
information and egocentric positional estimates relative to the
environment walls, as has been demonstrated in rodents*°.

Scene-specific responses have been reported also in the human
anterior subiculum®®. Although these data may seem at odds with
our posterior subiculum boundary effects, it is possible that
anterior subiculum shows a univariate scene response, whereas
the multivariate pattern in posterior subiculum is informative of
allocentric boundary information in the absence of greater scene-
related activity. Moreover, while an alternate multivariate analysis
strategy—representational similarity analysis (RSA)—supported
the decoding results of allocentric boundary coding in posterior
EC, the effect in posterior subiculum was not significant (see
Supplementary Note 5 and Supplementary Table 1). The dis-
crepancy between the decoding and RSA allocentric boundary
results in the subiculum may reflect the fact that the linear
SVC uses only the most informative voxels to form a decision
hyper-plane between categories, whereas the RSA tested for the
degree of similarity across all voxels in the ROI. These differences
between subiculum and EC, therefore, may speak to a sparser
voxel-level representation of allocentric boundary direction across
regions. Alternatively, representations of different allocentric
boundary directions might be less distinct in the subiculum while
still allowing for successful decoding. Future studies will be
necessary to elucidate the nature of scene-sensitivity in the sub-
iculum, and the precise perceptual features driving these effects.

Neuronal populations originally thought to support only spa-
tial navigation have been shown to be involved also in more
abstract cognitive processes. For example, in rodents MEC grid
cells map not only space, but also different sound frequencies®”.
Similarly, grid cell-like representations in humans, revealed via
fMRI, have been found to support the organisation of conceptual
knowledge®3. In the current experiment, therefore, although we
have used a very concrete example of a boundary coding (i.e., a
physical boundary), the same posterior EC mechanism may

support more abstract boundary-related processes, such as the
segmentation of temporal information into event episodes, or the
coding of visual boundaries#®. There is evidence that boundaries
are used to segment a continuous temporal stream into distinct
episodic events. For example, increased forgetting of object pairs
is observed when having to remember items between-rooms
versus within the same room®’. Furthermore, activity in the
hippocampus has been shown to correlate with the salience of
event boundaries during the viewing of films®!. The ERC and
subiculum, therefore, may also play a critical role in the formation
of event episodes.

Taken together, our study provides the first evidence of allo-
centric boundary coding in humans, and suggests that, consistent
with models of anatomical connectivity, posterior EC and sub-
iculum provide support for positional coding, whereas the ante-
rior EC and subiculum code for external sensory information
such as landmarks. These findings advance our understanding of
EC function, and provide further mechanistic explanation
underlying the division of labour in this region.

Methods

Participants. In total, 31 right-handed, young healthy adults (13 female; mean age
26.12 years, range: 20-33 years) participated in the experiment and were paid 31
euros for their time. All participants provided informed consent, and the experi-
ment received approval from the Ethics Committee of the University of
Magdeburg.

General procedure. The experiment comprised two separate days of testing. On
the first day, the participant learned the layout of a VE outside of the scanner. On
the following day of testing, the participant underwent high-resolution fMRI
scanning.

The VE. The VE was created using WorldViz Vizard 5.1 Virtual Reality Software
(WorldViz LLC, http://www.worldviz.com). It comprised a large grass plain (600 x
600 virtual metres?; invisible walls that prevented the participant from leaving the
VE resulted in a 500 x 500 virtual metres? explorable area) surrounded by four
distinct global landmark cues, and contained four rectangular boundaries (2 x 4 x
40 virtual metres), each with a unique brick texture (Fig. 3a; for rights reasons, the
images used here for the Figures differ to those used in the experiment). The global
landmark cues (a mountain, a tower, a cathedral and a city) were rendered at
infinity, and indicated cardinal heading directions in the environment. During the
experiment, however, the landmarks were never referred to using cardinal direc-
tions (i.e., north, south, east and west). In the VE, two of the four boundaries were
arranged with their long axes spanning north-to-south, whereas the other two
boundaries spanned east-to-west.

Training outside of the scanner. A head mounted display (HMD; Oculus Rift
Development Kit 2) was used during training to provide an immersive learning
experience. The participant stood during the experiment and was required to
physically turn on the spot to change facing direction in the VE; translations were
controlled via a button press on a three-button wireless mouse held in the parti-
cipant’s right hand throughout the training phase. To promote exploration of the
VE and its boundaries, the participant was required to collect blue tokens (0.25
virtual metre radius spheres positioned at a height of 0.8 virtual metres; the first-
person view in the VE was rendered at 1.8 virtual metres) that formed a path
around the four boundaries (Fig. 3b). The participant was required to walk through
each token after which it disappeared; the participant was free to collect the tokens
in any order. Furthermore, to ensure that the participant was aware that the
boundary was impassable, they were required to “activate” red sensors located on
each side of a boundary (eight sensors in total, positioned at a height of 2 virtual
metres; wall trigger radius = 0.2 virtual metres), via a button press, which resulted
in them turning green.

After all tokens had been collected, and all sensors activated, the participant
completed a JRD criterion task, which was used to assess their knowledge of the
VE’s layout (Fig. 3c). On each trial of the JRD task, the participant was presented
with a static picture of one of the four global landmarks (1s), which they were
required to imagine facing. After a brief pause (0.5 s), a picture of a different global
landmark was shown and the participant was required to indicate the direction of
the second landmark relative to the first. Specifically, if the participant thought that,
when facing the first landmark, the second landmark was located to the
participant’s left then they pressed the thumb button on the mouse (i.e., the left-
most button); if the second landmark was located behind them, they pressed the
left mouse button (i.e., the middle of the three response buttons), and if it was
located to the right, they pressed the right mouse button (i.e., the right button).
Performance was assessed via the number of correct responses, with the participant
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Fig. 3 Schematic of the VE and criterion task during learning phase. a The VE comprised four boundaries, each with a unique texture. The long axis of two
of the boundaries spanned North-South, and two spanned East-West. The VE was surrounded by four global landmarks rendered at infinity that provided
information regarding cardinal direction in the environment. Each side of the boundary created an allocentric boundary either to the North (N), South (S),
East (E), or West (W). b In the learning phase the participant wore an HMD and controlled their orientation by physically rotating on the spot whereas
translations were controlled via a button press. During exploration, the participant was required to collect all blue tokens and activate all red sensors

located on the different sides of the boundaries. ¢ After exploring the environment, the participant completed a JRD task in which they were presented with
one of the four global landmarks and asked to indicate the relative direction to another global landmark; the landmarks shown here are the City (pictured to
the left) and Cathedral (pictured to the right). Participants were allowed to move on to the scanned test phase only after answering all JRD questions

correctly

proceeding to the fMRI scanner task only if they answered all 12 JRD questions
correctly; an incorrect response resulted in the participant returning to the VE to
repeat the exploration phase.

fMRI task. In the fMRI task, the participant viewed passive movement in the VE
and was required to indicate the global landmark located in the direction of a cue
object positioned either to the left or right of their path. Each trial comprised
passive movement along a predefined path in which the participant could see (1)
one global landmark towards which they were moving, (2) one boundary and (3)
the cue object (Fig. 4a). After the movement ended (2 s), the screen faded to black
for 4 s before the start of the decision phase (2 s), which comprised a forced-choice
response. Here, the participant had to indicate which of the three global landmarks
(i.e., the remaining landmarks not seen during the passive movement on the trial)
was located in the direction of the cue object. For example, if the participant viewed
a path heading towards the mountain, and the cue object was positioned on the
right-hand side of the path, the participant was required to identify the global
landmark located to the right of the mountain. In this case, the correct response
would be the clock tower. In the forced-choice decision, the three global landmarks
were presented on screen in a row, with the position of the landmarks randomly
assigned either to the left, middle, or right position of the screen on each trial;
randomising the screen position-landmark associations was important to ensure
that they did not confound any subsequent decoding analyses (Supplementary
Note 6 and Supplementary Fig. 8). The participant had to select, via a right-hand
MR-compatible button box, which of the landmarks they thought was located in
the direction of the cue object using either a thumb, index, or middle finger
response, corresponding to the landmark image’s position on the screen. Videos of
both the exploration phase and fMRI task can be found online (http://www.
wolberslab.net/boundarycoding.html).

By using predefined paths in the VE we were able to control the position of the
boundary and goal object relative to the participant. There were three paths per
side of the boundary (24 in total), and these paths resulted in the boundary being
located either to the left, right or straight in front of the participant (Fig. 4b). Each

path was repeated four times per run (96 trials per run; three runs in total) and
the cue object’s position changed over trials so that its position was balanced across
the left and right side of the path (i.e., for each path repeated four times per run, the
cue object was located twice to the right and twice to the left of the path). Trials
could then be binned to examine different questions regarding allocentric
boundary or allocentric goal direction coding (Fig. 4c). Importantly, these different
spatial properties were balanced across the different conditions, meaning that the
comparisons were orthogonal (Supplementary Fig. 9). For example, trials used to
examine allocentric boundary to the North would comprise views of two different
boundaries (with their distinct textures), views of different global landmarks, the
egocentric location of the boundary location to the participant’s left, right and
front, allocentric goal locations pointing to all four global landmarks as well as an
equal number trials in which the goal object was located egocentrically to the left or
right of the participant. Each trial lasted 8 s with a mean 1 s inter-trial interval and
each of the three runs lasted 14.8 min.

fMRI data acquisition. Imaging data were acquired using a 3 T SIEMENS
(Erlangen, Germany) Magnetom Prisma scanner, with a 64-channel phased array
head coil. Scans comprised a whole-head, three-dimensional structural T1-
weighted anatomical image with 1 mm isotropic resolution (repetition time (TR)/
echo time (TE)/inversion time = 2500/2.82/1100 ms; flip angle = 7° field of view
(FOV) = 256 x 256 mm; 192 slices; GRAPPA acceleration factor 2); a high-
resolution moderately T2-weighted structural image comprising the hippocampus
and EC acquired perpendicular to the long axis of the hippocampus using a turbo-
spin-echo sequence (in-plane resolution = 0.4 x 0.4 mm, slice-thickness = 1.5 mm;
TR/TE = 4540 ms/44 ms; FOV = 224 x 224 mm; 32 slices); gradient echo field
maps (in-plane resolution = 1.6 x 1.6 mm; slice-thickness = 2 mm; TR/TE1/TE2 =
720/4.92/7.38 ms; flip angle = 60°% FOV = 220 x 220 mm; 72 slices) and three runs
(445 volumes each) of T2*-weighted functional images acquired with a partial-
volume echo-planar imaging sequence, aligned with the long axis of the hippo-
campus (in-plane resolution = 1.5 x 1.5 mm, slice-thickness = 1.5 mm + 10% gap;
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Fig. 4 fMRI scanner task, trial coding and example group ROls. a On each scan trial, the participant viewed the global landmark towards which they were
travelling, a boundary and a cue object (pole with ball). The participant then completed a forced-choice decision in which they were presented with the
three other global landmarks (i.e., those not seen during the passive movement) and were required to select the landmark located in the direction of the
goal object (correct answer here indicated by “Allo Goal Dir"). b Schematic of the 24 passive paths used in the scan task. Each path was repeated four
times resulting in 96 trials per run. ¢ Each trial comprised 2 s of passive movement, four seconds in which the visual input was removed (i.e., the portion of
the trial used for the fMRI analysis) and 2 s to make the cue object direction decision. Trials were then coded according to either the allocentric boundary
direction or the allocentric goal direction. d All analyses were carried out in the participant’s native EPI space using manually segmented masks of the EC
and subiculum; the group averaged ROIs are presented here for display purposes only

TR/TE = 2000/30 ms; flip angle = 90°% FOV = 192 x 192 mm; 26 slices; GRAPPA
acceleration factor 2).

fMRI data preprocessing. A custom preprocessing pipeline was created using
Nipype®2, in which we combined packages from SPM12%3, FSL5°* and Advanced
Normalisation Tools*> (ANTS 2.1). The pipeline comprised realignment of the EPI
data to the first volume of the series (SPM), intensity-normalisation (FSL) and
high-pass filtering with a cut-off of 128 s (FSL). Structural T1 images were bias-
corrected (SPM) and segmented (SPM), with the resulting grey matter, white
matter and CSF tissue probability maps combined to create a mask for brain
extraction.

Using FSL’s epireg, EPI data were coregistered to the structural T1, whilst also
applying field map correction to the functional images using field maps acquired
during scan sessions. High-resolution T2 images were coregistered to the T1 using
ANTS. Manually segmented hippocampal T2 ROIs were coregistered to the EPI
data by concatenating the T2-to-T1, and EPI-to-T1-inverse matrices using ANTS
(Supplementary Note 6 and Supplementary Fig. 10). The EPI-to-T1-inverse matrix
was used to move the T1 brain mask (comprising grey matter, white matter and
CSF) into EPI space. The EPI data were then multiplied by this brain mask to
remove all non-brain tissue. In order to maintain as accurate anatomical specificity
as possible, all subsequent analyses were conducted on unsmoothed EPI data.

Medial temporal lobe masks. Bilateral hippocampi and parahippocampal cortices
were segmented manually on the individual subjects’ T2 images using “ITK-
SNAP™9, following an established protocol®” (Fig. 4d). Given the differences in
connectivity along the anterior and posterior portions of the EC and subiculum, we
split each of the individual participant’s ROIs in the middle of the long axis,
separately for each hemisphere (see Supplementary Fig. 11 for size and temporal
signal-to-noise ratio of the ROIs). Due to movement artifacts in the T2 images, it
was not possible to segment the hippocampi of three male participants. Conse-
quently, all results reflect the data from 28 participants (13 females). For a separate
control analysis to assess the possible effects of leakage of information between
neighbouring ROIs, we created more conservative versions of our masks in which
we eroded voxels on the perimeter of the ROI using the erode function in FSL
maths (box kernel =1 x 3 x 1 voxels) (Supplementary Fig. 12).

Data analysis. Prior to decoding analysis, movement parameters obtained from
the realignment of the functional images were regressed out of the data®(. Here, we
included 24 regressors in the model, reflecting the realignment parameters, their
derivatives, their squares and their square derivatives®®.

Each of the 96 trials per run was modelled separately in the analysis. To reduce
the possible influence of visual information in our decoding analysis, we analysed
the portion of data corresponding to the period of the trial after the passive
movement ended during which there was no visual input (i.e., a black screen) and
was therefore matched across different allocentric boundary/goal directions. Given
its high performance in decoding event-related functional imaging data with short
inter-stimulus intervals, the “Add”® model was implemented here. This model
aims to capture the putative peak of the haemodynamic response function
occurring 4-6 s after the onset of the event of interest. Since we wanted to capture
activity associated with the stationary period of the trial, which occupied the period
2-6 s after trial onset (Fig. 4c), we took the estimates from an unconvolved boxcar
regressor that spanned three TRs occurring 4-6 s after the stationary phase0:60
(i.e., 6-12's after trial onset), in separate models comprising one regressor
representing the trial of interest, and a second regressor modelling all other trials in
the scan run. Consistent with previous studies we also averaged the estimates over
separate runs to boost the signal-to-noise ratio®!. Specifically, to enhance the signal
corresponding to the allocentric condition of interest whilst maintaining the voxel
space, we created an average over the three runs by first ordering the trials in each
run according to the condition to-be-decoded (allocentric boundary or allocentric
goal). The rationale here was to strengthen the condition of interest, whilst
weakening any signal associated with other conditions (e.g., head direction). This
trial-averaging resulted in 96 samples per participant, balanced equally across
North, South, East and West directions for allocentric boundary and allocentric
goal conditions.

A linear support vector classifier (SVC) with L2 regularisation as implemented
in Scikit-learn® was used for the decoding of different allocentric directions. The
regularisation strength was determined by adjusting the C hyperparameter. In
order to follow decoding best practices®?, we used nested cross-validation to
estimate the best C hyperparameter and obtained a cross-validated estimate of the
classifier accuracy with three outer folds using 20% of the data as test set in each
fold. The best hyperparameter was chosen within the inner nested cross-validated
fold, using a grid search with possible values in the range of 1-103 in steps of power
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of 10. All decoding analyses were conducted in the participants’ native EPI space
(see Supplementary Fig. 13 for an overview of the analysis pipeline).

Statistical tests. All behavioural data (mean accuracy and RT data from the
learning phase JRD and fMRI task) were submitted to repeated-measures ANOVAs
calculated using SPSS (IBM Corp. Version 21.0). Mauchly’s test of sphericity was
used to assess homogeneity of variance for the ANOVAs, and Greenhouse-Geisser
estimates of sphericity used to correct degrees of freedom when this assumption
was violated. Given that we had no apriori predictions as to differences in per-
formance across the different conditions of the behavioural tasks, follow-up two-
sided paired-sample ¢ tests interrogating significant main effects and/or interac-
tions were Bonferroni-corrected for multiple comparisons. Effect sizes were cal-
culated using online tools®, and all plots were created using a combination of
Matplotlib® and Seaborn®®.

For the decoding analyses in the separate ROIs, we obtained the mean
decoding score per participant over the three-folds of the cross-validation.
We then used the bias-corrected and accelerated boot-strap®” (BCa) to sample
from these values 10,000 times to obtain the distribution of our group-level
decoding accuracy®®. Non-parametric Monte Carlo significance testing®®70
was used to generate a p value based on the distribution of our data, where we
first subtracted the group-level decoding accuracy from each participant’s
decoding score, before adding chance performance (i.e., 25%). This had the
effect of shifting the distribution of our group’s decoding scores to around
chance performance, and we then again used the BCa (with 10,000 samples) with
these values to generate our null distribution. The one-tailed p value was
calculated by counting the number of times the boot-strap null mean exceeded
our observed group-level decoding score and dividing this value by the number
of samples (i.e., 10,000); importantly, 1 was added to both the numerator and
denominator of this calculation to correct for cases where none of the boot-strap
null means exceeded the group-level decoding score. Outside of our key ROIs
(EC and subiculum) we tested also whether we could decode allocentric
boundary and goal direction in manually segmented masks of the CA1, CA23/
DG and PHC. Given that we did not have overt predictions as to the expected
pattern of results in these ROIs, we used a Bonferroni-adjusted alpha level to test
for significant effects (three ROIs x two conditions = 0.05/6 = 0.008 adjusted
alpha).

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data underlying Figs. la-c and 2, and
Supplementary Figs. 1-8 and 11 are provided as a Source Data file.

Code availability
The custom code used to analyse the data are available from the corresponding author
upon reasonable request
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